Gate 广场创作者新春激励正式开启,发帖解锁 $60,000 豪华奖池
如何参与:
报名活动表单:https://www.gate.com/questionnaire/7315
使用广场任意发帖小工具,搭配文字发布内容即可
丰厚奖励一览:
发帖即可可瓜分 $25,000 奖池
10 位幸运用户:获得 1 GT + Gate 鸭舌帽
Top 发帖奖励:发帖与互动越多,排名越高,赢取 Gate 新年周边、Gate 双肩包等好礼
新手专属福利:首帖即得 $50 奖励,继续发帖还能瓜分 $10,000 新手奖池
活动时间:2026 年 1 月 8 日 16:00 – 1 月 26 日 24:00(UTC+8)
详情:https://www.gate.com/announcements/article/49112
超越数字:为什么相关性不能证明你的交易策略有效
基础知识:相关性到底告诉你什么
相关系数是衡量两个变量共同变化的单一指标。其值始终在-1到1之间,接近1的读数表明同步运动,接近-1的值显示逆向关系,而在零附近的数字则表示线性关系微弱或不存在。这个指标在金融、工程和科学研究中变得不可或缺,因为它能将复杂的数据模式转化为一个易于理解的数字。
在加密货币和传统市场中,交易者依赖相关性来评估投资组合风险和设计对冲策略。但关键在于:理解相关性实际上衡量的内容与人们假设它衡量的内容之间的差异,将区分盈利的投资者和那些付出高昂学费的教训者。
相关性的三大主要类型
皮尔逊相关系数在量化金融中占据主导地位。它衡量两个连续变量之间的线性关联——数据点围绕一条直线的紧密程度。然而,如果关系不是线性的,这个指标就会遗漏关键的模式。
斯皮尔曼秩相关系数捕捉单调关系,不假设线性关系。它在处理非正态分布或序数排名时尤为有用。加密市场的波动性数据常常表现出不可预测的行为,使得斯皮尔曼方法在数字资产分析中越来越受欢迎。
肯德尔tau提供另一种基于秩的替代方案,在样本量较小或数据中存在大量平局值时表现更佳。每种方法适用于不同场景——选错方法可能导致对资产关系得出错误结论。
方法背后的数学原理
皮尔逊系数等于两个变量的协方差除以它们标准差的乘积:
相关性 = 协方差(X, Y) / (标准差(X) × 标准差(Y))
这种标准化将结果压缩到-1到1的范围内,使得不同市场和时间框架的比较变得有意义。没有它,你就无法比较比特币和以太坊价格变动之间的关系与油价和通胀之间的关系。
在实际操作中,软件会处理这些算术运算。核心思想是:相关性消除了规模和波动性的影响,纯粹反映方向关系。
解读数字:快速指南
不同领域有不同的阈值,但以下行业标准广泛适用:
负值的逻辑相同;-0.7表示相当强的逆向运动。然而,具体数值是否重要取决于上下文。比如,0.6的相关性可能会让研究人类行为的社会科学家兴奋,但会让寻求自然法则验证的物理学家失望。
样本量问题:你的相关性可能只是运气
一个关键盲点:相同的数值相关性在不同样本量下代表的实际情况可能天差地别。从10个数据点到1000个数据点计算相关性,可靠性差异巨大。
为了判断相关性是否反映现实还是随机噪声,研究人员会计算p值和置信区间。大样本可以使适度的相关性具有统计显著性,而小样本则需要极高的相关值才能达到显著性。在分析新兴山寨币或新推出的交易对时,尤其要注意这一点,因为它们的历史数据有限。
最大的陷阱:相关性等于因果关系 (它并不是)
这个误区会让投资者付出巨大代价。两个变量可以一起变化,但并不意味着一个导致另一个。可能有第三个因素驱动两者,也可能在某些市场阶段,第四个因素抑制了关系。然而,交易者常常误将相关性当作因果关系:
将相关性误当作因果关系,会导致错误的对冲策略和投资组合构建,在真正的压力下崩溃。
当皮尔逊未能捕捉到模式
皮尔逊相关性擅长检测线性关系,但在弯曲、阶梯式或其他非线性关系中表现不佳。散点图可能显示出明显的模式,而皮尔逊的相关系数却只有(0.3)甚至几乎无关(0.05)。在这种情况下,斯皮尔曼的rho或肯德尔tau通常能捕捉到真实的联系。
加密市场经常表现出非线性动态。在牛市中,山寨币的相关性飙升;在熊市中,相关性可能意外变为正或负。仅依赖皮尔逊快照会带来危险的盲点。
相关性的不稳定性:时机陷阱
相关性会变化。市场环境的转变——金融危机、监管公告、技术突破或宏观经济意外——都可能颠覆多年来建立的关系。滚动窗口相关性可以揭示这些趋势,但静态的历史值则无法。
例如:自2016年以来,比特币与传统股市的相关性剧烈波动,某些时期接近零,2020-2021年又急剧上升。在2018-2019年的相关性数据基础上构建的投资组合,在COVID崩盘时可能提供了虚假的多元化保护。
对于依赖稳定关系的策略,定期重新计算和趋势监控是必不可少的。自动化的相关性仪表盘现在可以提醒交易者关系何时超出阈值,避免过度依赖过时的模式。
使用相关性数据的实用守则
在任何决策中使用相关性之前:
投资者实际如何利用相关性
投资组合构建高度依赖相关性。当两个资产的相关性低或为负时,将它们组合可以降低整体波动率,同时不牺牲预期收益。这一多元化原则支撑着现代资产配置。
配对交易利用相关性崩溃——当历史上相关的资产偏离时,交易者押注其回归。因子投资通过相关性矩阵理解不同因子(规模、价值、动量、加密特定因素)的互动。
实际场景:
历史上,美国股票与政府债券的相关性较低甚至为负,帮助平滑投资组合的回撤。近年来,这一关系减弱,增加了传统60/30股票债券配置的复杂性。
石油公司与原油价格显示出中等但不稳定的相关性——令人惊讶的是,直觉上联系紧密。运营效率、地缘政治事件和炼油厂动态引入了噪声。
比特币与山寨币在牛市中高度相关,但在熊市中会迅速脱钩。假设固定的比特币-山寨币相关性进行对冲,投资者会发现这些对冲在最需要时失效。
R与R平方:了解区别
**R (相关系数)**显示线性关系的强度和方向。
**R平方(R²)**表示在线性模型中,一个变量的方差由另一个变量解释的百分比。
在投资中:R告诉你关系的紧密程度(方向和强度);R²则反映预测能力。比如,0.7的相关性意味着同步运动,但只有49%的解释力((0.7²=0.49))。在建立统计模型或做预测时,这个差异非常重要。
现实检验:相关性只是起点,不是终点
相关系数确实非常有用——一种快速、标准化的方式,评估两个数据流是否共同变化。对于投资组合设计、风险评估和探索性分析,它依然不可或缺。
但相关性有其局限:不能建立因果关系,在非线性关系中表现不佳,极度依赖样本量,且易被异常值扭曲。相关性还会随市场周期变化,在危机中可能完全消失。
将相关性视为众多工具之一。结合可视化分析、其他统计方法、显著性检验和滚动窗口监控。结合经济逻辑和专业知识。这种结合——量化严谨加上人类判断——能带来更好、更持久的投资决策,而非仅凭相关数字。